GENERAL SPECIFICATION APPROVAL FOR TDK MULTILAYER CERAMIC CAPACITORS

CUSTOMER		DWG.NO.
TDK ITEM C1005 TO	DATE ISSUED	
DRAWN BY	CHECKED BY	APPROVED BY

Customer to Complete

Approved	Office/Division:		Date:
Conditional Approval	Name (Please print):		1
Disapproved	Title:		
If you approve, please desc explain your decision by ref	ribe your requests or comments regarding the o	change. If you	u reject, please
<u>x</u>	Х		Х
CUSTOMER SIGNATUR	E TITLE		DATE (mm/dd/yy)

Multilayer Ceramic Capacitors

General Specification for C1005 ~ C5750

Contents	Page
1.0 Introduction	01
1.1 Scope 1.2 Storage 1.3 MLCC Inner Structure	01 01 01
2.0 Number Description	
2.1 Part Number 2.2 Inspection Number	02 03
3.0 Rated Capacitance and Tolerances, Operating Temperature, and Dimensions	04
 3.1 Standard Combination of Rated Capacitance and Tolerances 3.2 Capacitance Step in E Series 3.3 Operating Temperature Range 3.4 Dimensions	
4.0 Performance and Test Boards	05
4.1 Performance 4.2 Test Boards	05 12
5.0 Available Capacitance Range	14
5.1 Available Capacitance 5.2 Standard Capacitance	14 17
6.0 Packaging	
6.1 Tape and Reel 6.2 Bulk Case 6.3 Bulk Bag 6.4 Labeling	
7.0 Caution	
8.0 Disposal	

1.0 Introduction

1.1 Scope

This specification is applicable to TDK chip type multilayer ceramic capacitors. When questionable matters arise regarding product specifications, this specification shall be applicable with priority and the matters shall be settled with written documents between the Design Groups of both companies. Production locations defined in this specification shall be TDK Corporation Japan, TDK Taiwan, TDK Xiamen (CHINA), TDK Suzhou (CHINA), Korea TDK, TDK Components USA, TDK Thailand, TDK Malaysia and TDK Hungary.

EXPLANATORY NOTE:

This specification warrants the quality of the TDK ceramic chip capacitor. The chips should be evaluated or confirmed by mounting the component on your board. If the use of the capacitor extends beyond the bounds of this specification, we can not guarantee its performance. This specification is subject to change without notice. Please contact your local TDK Sales Representative for all current documentation.

1.2 Storage

TDK multilayer ceramic chip capacitors will not lose their electrical characteristics in ambient conditions; however, solderability and taping properties may change during extended storage. Therefore, the following precautionary measures are recommended:

- Storage Environment:

The packaging of chip capacitors is designed to have a long shelf life, but in order to minimize the aging of the packaging materials, storage conditions should be less than 40°C and under 70% relative humidity. Use TDK multilayer ceramic chip capacitors within six months of receiving.

- Atmosphere:

Chlorine gas or sulfuric acid in the air may adversely affect the solderability of the termination, therefore, avoid exposure to this environment.

- Rapid temperature changes:

When removing TDK multilayer ceramic chip capacitors from their storage place, avoid any differences in temperature that would cause moisture condensation.

1.3 MLCC Inner Structure

Figure 1.3: MLCC Inner Structure

z

+80%, - 20%

2.0 Number Description - the TDK item number and inspection number are described herein.

2.1 Item Number Description

figures of the capacitance, the third digit identifies the multiplier. R is designated for a decimal point.

Examples

335 3,300,000 pF (3.3µ F) ---3R5 ---3.5 pF 010 ---1 pF

Туре		Dimer	nsions ¹ (Unit: mn			
TDK (EIA style)	L	w	Т	В	G	Illustration
C1005 (CC0402)	1.0 ± 0.05	0.5 ±0.05	0.50 ± 0.05	0.10 min.	0.30 min.	
C1608 (CC0603)	$1.60 \pm {}^{[0.07]}_{0.10}$	0.80± [0.07] 0.10	$0.80\ \pm {}^{[0.07]}_{0.10}$	0.20 min.	0.30 min.	
C2012 (CC0805)	$2.00\ \pm\ {}^{[0.10]}_{0.20}$	$1.25 \pm \begin{smallmatrix} [0.10] \\ 0.20 \end{smallmatrix}$	$\begin{array}{c} 0.60 \pm \overset{[0.10]}{_{0.15}} \\ 0.85 \pm 0.15 \\ 1.25 \pm 0.20 \end{array}$	0.20 min.	0.50 min.	LG
C3216	$3.20 \pm {}^{[0.10]}_{0.20}$	$1.60 \pm {[0.10] \atop 0.20}$	$ \begin{array}{c} 0.60 \pm \begin{bmatrix} 0.10 \\ 0.15 \\ \end{array} \\ 0.85 \pm 0.15 \\ 1.45 \\ \end{array} $		4.00 min	
(CC1206)	3.20 ^{+0.30} _{-0.10}	1.60 ^{+0.30} -0.10	1.15 ± 0.15 1.30 ± 0.20 $1.60 \ {}^{+0.30}_{-0.10}$	0.20 min.	1.00 min.	
C3225 (CC1210)	3.20 ± 0.40	2.50 ± 0.30	$\frac{2.00 \pm 0.20}{2.50 \pm 0.30}$	0.20 min.		
C4532 (CC1812)	4.50 ± 0.40	3.20 ± 0.40	$\frac{1.60 \pm 0.20}{2.30 \pm 0.20}$	0.20 min.		
C5750 (CC2220)	5.70 ± 0.40	5.00 ± 0.40	1.60 ± 0.20 2.30 ± 0.20	0.20 min.		

Table 2.1: Capacitor Dimensions

¹ Tolerance is for tape and reels packaging styles; dimensions inside of [] are applied to bulk case

2.2 Inspection Number

All TDK capacitors will be labeled with an inspection number. The inspection number is assigned only after all QA requirements are confirmed. This number also provides full traceability of all processing details and should be included with any inquiry back to the factory.

Example:
$$\underline{M} \quad \underline{9} \quad \underline{A} \quad - \quad \underline{X} \quad \underline{X} \quad - \quad \underline{X} \quad \underline{X}$$

- a) Line code
- b) Last digit of the year
- c) Month (ex. A for January, B for February, and so on. (Skip "I"))
- d) Inspection Date of the month.
- e) Serial No. of the day

3.0 Rated Capacitance and Tolerances, Operating Temperature, and Dimensions

3.1 Standard combination of rated capacitances and tolerances

Class	Temperature Characteristics	Capacitanc	e Tolerance	Rated capacitance
			C (± 0.25pF)	1, 1.5, 2, 2.2, 3, 3.3, 4, 4.7, 5
		10pF and under	D (± 0.5pF)	6, 6.8, 7, 8, 9, 10
1	C0G		F (± 1pF)	6, 7, 8, 9, 10
		over 10pF	J (± 5%)	E 12 series
		over topp	K (± 10%)	
2	X5R, X7R	K (± 10%),	M (± 20%)	E - 6 series
3	Y5V	Z (+80%	%, -20%)	E - 3 series

Table 3.1: Rated Capacitances and Tolerances

3.2 Capacitance Step in E series

Table 3.2: Capacitance Step

E series		Capacitance Step											
E - 3	1			2.2				4.7					
E - 6		1	1	1.5		.2	3	.3	4	.7	6.	8	
E - 12	1	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2	

3.3 Operating Temperature Range

Table 3.3: Operating Temperature Range

T.C.	Min.	Max.	Reference Temperature	Cap Change
C0G	IG - 55°C		25 °C	±30 ppm/°C
X7R	X7R - 55 °C		25 °C	±15 %
X5R	- 55 °C	85 °C	25 °C	±15 %
Y5V	- 30 °C	85 °C	25 °C	+22/-82 %

3.4 Dimensions

See Table 2.1: Capacitor Dimensions

4.0 Performance and Test Boards

4.1 Performance

			Table 4.1: Performance								
No.	ltem			Perf	orman	се		Test or inspection method			
1	External Appea	arance	No defe perforn	ects which may affect nance.				Inspect under 3x magnification.			
2	Insulation Resistance		10,000 M Ω or 500M Ω / μF min. (10,000 M Ω or 100M Ω / μF for capacitors rated 16, 10 and 6.3V DC) whichever smaller.					Apply rated voltage for 60 s. (For 630V rated voltage, use 500V.)			
3	Dielectric Withst (DWV)	anding	Withstand test voltage without insulation breakdown or other damage.			Class 1: 3xRV Class 2, 3: 2.5xRV (For 250 & 630V, use 1.5xRV) (DC voltage shall be applied for 1 ~ 5 s. Charge / discharge current shall not exceed 50mA.)					
								Capacitance	Frequency	v Voltage	
4	Capacitanco	Class 1	Withi	Within the specified tolerance.				1,000 pF and under Over 1,000 pF	1MHz ± 10%	1.0 ± 0.2 V r.m.s.	
	Capacitance						Canacitance	Frequency	Voltage		
		Class 2, 3	Within the s		the specified tolerance			$C^* < 10\mu F$	1kHz + 10%	10+02 V rms	
		01000 2, 0	at 1000) hrs ag	ge (per	IEC-384-9).		C* > 10μF	120Hz ±10%	0.5 ± 0.2 V r.m.s.	
									-		
			330pF < C* ≥ 30pF		Q ≥ 1000			Capacitance	Frequency	Voltage	
5	Q (Class 1)							1,000 pF and under	1MHz ± 10%	1.0 ± 0.2	
			C* < 3	30pF	Q ≥ 40	00+(20 X C*))	Over 1,000 pF	1kHz ± 10%	V r.m.s.	
			T.C.	Ra Vol	ted tage	D.F.					
			X7R	≥ 25	V DC	0.030 max.					
				16V	/ DC	0.050 max.			_		
6	Dissipation Fa	actor**	X5R	10V D	C and	0.050 max.			Frequency	Voltage	
0	(Class 2, 3	3)		50V	/ DC	0.050 max.		C* > 10μΓ	120Hz ± 10%	0.5 ± 0.2 V r.m.s.	
				25V DC		0.075 max.					
			¥5V	16\	/ DC	0.100 max.					
				Below	16V DC	0.125 max.					

* C denotes rated capacitance. ** Unless otherwise stated.

			Tast or inspection method				
No.	ltem	Performance	Test or inspection method				
7	Temperature Characteristic (Class 1)	Temperature Coefficient (ppm/°C) C0G: 0 ± 30 Capacitance drift Within ± 0.2% or ± 0.05pF, Whichever is larger.	Temperature Coefficient shall be calculated based on capacitance values referenced at 25°C. Temperature measured below 20°C shall be at -10°C and -25°C.				
8	Temperature Characteristic (Class 2, 3)	Capacitance Change (%)* X5R X7R	Capacitance shall be measured in the sequence listed in the following table after thermal equilibrium is obtained for each step. See table 3.3 for appropriate temperatures. % Cap change to be calculated using ref. temp. from step 3.				
		Y5V +22/-82	Step Temperature (°C)				
			1 Reference Temp. ± 2°C				
			2 Min. Temp. ± 2°C				
		* No Voltage Applied	3 Reference Temp. ± 2°C				
			4 Max. Temp. ± 2°C				
9	Terminal Strength	No sign of termination coming off, breakage of ceramic, or other abnormal signs.	Glue and wave solder (reflow solder for C1005) the capacitor on a P.C. Board (figure 4.2.2) and apply a pushing force of 5N or (2N for C1005) for 10 \pm 1s.				

			lided)
No.	ltem	Performance	Test or inspection method
10	Bending	No mechanical damage.	Glue and wave solder (reflow solder for C1005) the capacitor onto a P.C. Board (figure 4.2.1) and bend for 1mm. 50 - 120 +
11	Solderability	New solder to cover over 75% of termination. 25% may have pinholes or rough spots but not concentrated in one spot. Ceramic surface of A sections shall not be exposed due to melting or shifting of termination material.	Completely soak both terminations in solder at 235 ± 5°C for 2 ± 0.5s. Apply flux {Isopropyl alcohol (JIS K 8839) and Rosin (JIS K 5902), 25% solid solution} Dip in solder {H63A (JIS Z 3282)}

				I. Felle	ormance (contin				
No.	lt	em		Perfor	mance	Test or inspection method			
		External appearance	No crack terminati 60% with	s are al ons be o n new so	lowed and covered at least older.	Completely soak both terminations in			
			Characte	eristics	Change from initial measurement.	solder at $260 \pm 5^{\circ}$ C for 5 ± 1 s. Preheating condition			
		Capacitance	Class 1	C0G	\pm 2.5% or \pm 0.25pF max. whichever is larger	Temp: 150 ± 10°C Time: 1 ~ 2 min.			
				X5R	± 7.5%	Apply flux			
			Class 2, 3	X7R	± 7.5%	Apply liux (Isopropyl alcohol (IIS K 8830) and			
	Resistance			Y5V	± 20 %	Rosin (JIS K 5902)			
12	to solder				1	25% solid solution}			
	heat	Q (Class 1)	Meet the	initial s	pec.	Dip in solder {H63A (JIS Z 3282)} Leave the capacitors in ambient			
		DF (Class 2, 3)	Meet the	initial s	pec.	conditions for the following time before measurement.			
		Insulation resistance	Meet the	initial s	pec.	Class 1: $24 \pm 2hr$. Class 2, 3: $48 \pm 4hr$.			
		DWV	No insula damage.	ation bre	eakdown or other				
		External appearance	No mech	nanical c	lamage.				
			Characteristics initia mea		Change from initial measurement				
		Canacitance	Class 1	C0G	\pm 2.5% or \pm 0.25pF max. whichever is larger	Solder the capacitors on a P.C. Board			
		Capacitance		X5R	± 7.5%	Apply a wayoform with amplitude of 1.5			
13	Vibration		Class 2, 3	X7R	± 7.5%	mm P-P with frequencies sweep from			
				Y5V	± 20 %	10Hz to 55Hz and back to 10Hz in about 1 min. Repeat this for 2 hrs each in 3			
		Q (Class 1)	Meet the	initial s	pec.	mutually perpendicular directions.			
		DF (Class 2, 3)	Meet the	initial s	pec.				

*C denotes rated capacitance

No.	lte	m		Perfor	mance	Te	Test or inspection method			
		External appearance	No mecha	anical d	lamage.	Solder	the capacitors on a	a P.C. Boar	·d	
			Characte	Characteristics% Cap change± 2.5% or			Expose the capacitors to the sequence outlined below.(Steps 1-4) See table			
		Capacitance	Class 1 C0G		± 0.25pF max. whichever is larger	3.3 for times c	3.3 for temp. Repeat steps 1-4 for 5 times consecutively.			
			Class 2, 3	X7R Y5V		Step	Temperature	Time (min.)]	
	Temperature					1	Min. Temp. ± 3°C	30 ± 3		
14	cycle	Q (Class 1)	Meet the	initial s	pec.	2	Reference Temp. ± 2°C	2~5		
						3	Max. Temp. $\pm 2^{\circ}C$	$30\pm\ 2$		
		DF (Class 2, 3)	Meet the	initial s	pec.	4	Reference Temp. ± 2°C	2~5		
		Insulation resistance	Meet the	initial s	pec.	Leave	the capacitors in a	mbient	1	
		DWV	No insula damage.	tion bre	eakdown or other	conditio measu Clas Clas	conditions for the following time before measurement. Class 1: $24 \pm 2hr$. Class 2, 3: $48 \pm 4hr$.			
		External appearance	No mecha	anical c	lamage.					
			Characte	eristics	% Cap change					
		Capacitance	Class 1	C0G	max. whichever is larger	Solder	the capacitors on a	a P.C. Boar	ď	
			Class 2, 3	X5R X7R Y5V	± 10% ± 12.5% ± 30 %	Leave	at temperature 40 :	lg. ± 2°C,		
	Moisture		0.1.00	_	0.050	90 to 9	5% relative humidi	ty for		
15	Resistance	0 (0)=== 1)	C^ ≥ 30p		$Q \ge 350$	500 +2	4, -0 111.			
	(Oleady Olale)	Q (Class T)	30pF>C^≥		$Q \ge 275 + (5/2 \times C^2)$	Condition	the capacitors in a ons for the followin	nbient a time befoi	re	
		DF (Class 2, 3)	Character X5R: 20 X7R: 20 Y5V: 15	ristics 0% of 0% of 0% of	Initial spec max. Initial spec max. Initial spec max.) measu Clas Clas	rement. ss 1: 24±2hr. ss 2, 3: 48±4hr.	ge 2010.		
		Insulation resistance	1,000 MΩ (1,000 MΩ capacitors DC.) whic	2 or 50 2 or 10 s rated chever i	$M\Omega$ - μF min. MΩ - μF for 16, 10 and 6.3V is smaller.					

*C denotes rated capacitance

No.	lt	tem		Perfo	ormance	Test or inspection method
		External appearance	No mech	anical	damage.	
		Capacitance	Characte Class 1	COG X5R	SCap change±7.5% or±0.75pF max.whichever islarger±10%	Solder the capacitors on a P.C. Board (figure 4.2.2) before testing. Apply the rated voltage at $85 \pm 2^{\circ}$ C and 85% relative humidity for 1000 + 48, -0 hr.
	16 Biased Humidity -		Class 2, 3	X7R	± 12.5%	Change / discharge current shall not exceed 50mA.
16				101	± 30 %	Leave the capacitors in ambient conditions for the following time before
			30pF ≥	C*	$Q \ge 200$	measurement. Class 1: $24 + 2br$
		Q (Class 1)	C* < 30	pF (Q ≥ 100+(10/3 X C*)	Class 2, 3: $48 \pm 4hr$.
		DF (Class 2, 3)	Characte X5R: 20 X7R: 20 Y5V: 15	ristics 00% of 00% of 50% of	f Initial spec max. f Initial spec max. f Initial spec max.	Voltage conditioning: (Class 2, 3 only) Voltage treat the capacitor under testing temperature and voltage for 1 hour. Leave the capacitors in ambient
		Insulation resistance	500 MΩ c MΩ or 5 I rated 16, whicheve	or 25 Ν VΩ - μ 10 an er is sn	/Ω - μF min. (500 ιF for capacitors d 6.3V DC.) naller.	condition for 48 ± 4 hrs before Measurement. Use this measurement for the initial value.

*C denotes rated capacitance

						illieu/
No.	lt	em		Perfo	ormance	Test or inspection method
		External appearance	No mech	anical	damage.	Solder the capacitors on a P.C. Board
			Characte	eristics	Cap change	(figure 4.2.2) before testing.
			Class 1	C0G	± 3% or ± 0.3pF max. whichever is larger	Voltage conditioning: (Class 2, 3 only) Voltage treated the capacitor under test temperature and voltage for 1 hr.
		Capacitance		X5R	± 12.5%	Leave the capacitors in ambient condition
			Class 2, 3	X7R	± 15%	for 48 ± 4 hr. before measurement.
				Y5V	± 30 %	Use this measurement for initial value.
				- -		Apply maximum operating temp + 2°C
17	Life		C* ≥ 30	рF	Q ≥ 350	for $1000 + 48 - 0$ hr
	Life	Q (Class 1)	30pF>C*≥	:10pF	Q ≥ 275+(5/2 X C*)	Rated voltage ≤100V: 2xRV
			C < 10	pF	Q ≥ 200+(10 X C*)	Rated voltage = 250V: 1.5xRV
			Characte	ristics	()	Rated voltage = 630V: 1.2xRV
		DF (Class 2, 3)	X5R: X7R: Y5V:	200% 200% 150%	of Initial spec max. of Initial spec max. of Initial spec max.	Change / discharge current shall not exceed 50mA.
		Insulation resistance	1,000 Mg (1,000 M capacitor DC.) whi	Ω or 50 Ω or 1 rs rate cheve	0 MΩ - μF min. 0 MΩ - μF for d 16, 10 and 6.3V r smaller.	Leave the capacitors in ambient condition for the following time before measurement. Class 1: $24 \pm 2hr$. Class 2, 3: $48 \pm 4hr$.

*C denotes rated capacitance

Note: As for the initial measurement of capacitors (Class 2, 3) on number 8, 12, 13,14, and 15, leave capacitors at 150 +0, -10°C for 1 hr. and measure the value after leaving capacitors for 48 ± 4 hr. in ambient condition.

4.2 Test Boards

All the test boards are using the following conditions:

- 1. Board Material : Glass Epoxy (As per JIS C6484 GE4)
- 2. Board Thickness : 0.8mm (Board I), 1.6 mm (Board II)
- 3. Trace Material : Copper with tin overcoat
- 4. Trace Thickness : Copper (0.035 mm), Tin adequately covered.

4.2.2 Board II

Figure 4.2.2: Board II

5.0 Available Capacitor Range

Capacitance		C1	005			C1	608			C20	C 012	0G (by	case s	ize and C32	d voltag 216	ge)		C3	225			C4	532			C57	750	
(pr) E-6	630	(04	102)	50	630	(06	603) 100	50	630	(08	05) L 100	50	630	(12	:06) 100	50	630	(12	10)	L 50	630	(18	12)	50	630	250	20)	50
1.0	000	200	100		000	200	100		000	200	100		000	200	100		000	200	100	00	000	200	100	00	000	200	100	00
1.5																												
2.0																												
3.0																												
3.3																												
4.7																												
5.0																												
6.8																												
7.0																												
8.0																												
10																												
12																												
15															<u> </u>													
22																												
27																												
39																												
47																												
68																												
82																												
100																												
120																												
180																												
220																												
330																												
390																												
470																												
680																												
820																												
1,000																												
1,500																												
1,800																												
2,700																												
3,300																												
4,700		<u> </u>			-	<u> </u>															<u> </u>				<u> </u>			\vdash
5,600																												
6,800																												
10,000																												
12,000																												
18,000																												
22,000																												
27,000																												
39,000																												
47,000																												
56,000																												
82,000																												
100,000																												
120,000																												
180,000																												
220,000																												

像TDK

Page 14 of 39

5.0 Available Capacitor Range

Page 15 of 39

5.0 Available Capacitor Range

Canacitance												Y	5V (by c	ase	siz	e ar	nd v	olta	ge)															
(F)		(0402	15 2)			0	C160 (0603)8 3)			(201 0805	2 5)			C (C321	16 6)			(C322	:5))			(2453 1812	82 2)			0	C575 (2220	i0 0)	
E-3	50	25	16	10	6.3	50	25	16	10	6.3	50	25	16	10	6.3	50	25	16	10	6.3	50	25	16	10	6.3	50	25	16	10	6.3	50	25	16	10	6.3
.01																																			
.022																																			
.047																																			
.1																																			
.22																																			
.47																																			
1																																			
2.2																																			
4.7																																			
10																																			
22																																			
47																																			
100																																			

General MLCC Specification

5.1 TDK Standard Capacitors (for 1005-3216 only)

					De	efinit	tion	of T	DK	's "S	Stan	dar	d Ite	ms'	'													(COG	
	Item			COG X5R/X7R Y5 E-12 E-3 E-3									(5V			Cap	acitance (pF)	C10)05)2)	C [.]	160 603	8	C2012 (0805)	C3216 (1206)						
C	apacitanc	e				E-1	2						E-3					I	E-3					50	V		50V	<u>´</u>	50V	50V
			± 0.	.25 r	F		5	pF			40.0	,	4.70			_							1.0							
	Toloropoo					~ Г		איי	10 -		10 %	0	4,70	0,00	JU pi			000	/ `	00/			2.0					+		
	TOIETATICE		± 0.	.50 k		pr ·	< and	u	iu p		20.0		4 70		20 m	_	-	-80%	′0, -∠	0%			2.2							
			±	5 %			> 10) pF		1 [±]	20 %	0/2	4,70	10,00	JU pi								3.0					_		
De	tod Valta	~~			Lia	hor r	atad	volt		000	hor	who	+;+,+,	nd fo	r lou		otor		togo				4.0					+		
Ra		ye			riigi		aleu	voit	aye	Can	Des	subs	lilule	su iu		veri	alec		laye	•			4.7							
	Caso Sizo						Н	ighe	est ca	apad	citan	ce ir	n sm	alles	st bo	dy.							5.0		_			+		
	Jase Size					([Dowr	nsize	e: C3	3216	6,C2	012	-	C16	608,0	C100	05)						6.8							
						Tape	- & F	Reel	· 10	000) nc	* 13	s" ree	∍l. E	IA 48	31 le	ade	r.					7.0					_		
F	Packaging	J		p	last	ic ca	rrier	tape	∋ift		15m	m, o	then	wise	pap	er c	arrie	r tap	be.				9.0					+		
			*Note: 8	8,000 pc.	per 13"	reel for 3	216 1.6 1	thicknes	s parts.							_							10							
									Simp	lified	l inve	entor	y cor	ntrol									12					-		
					Adva	intag	es		Impr Rette	oved or de	i yielo liven	d and ,	d proo	ducti	vity								18							
									Bette	er pri	cing												22							
												1/7											33			$\left \right $		+		
Car	acitance			24.00			1		100)	(5R		K C	2004	2		1		2004	6			39							
	(pF)		(0402 (040	2)			(0603	8			(,201 0805	2			(1206	6 5)			47					_		
	(i)	50V	25V	16V	, 10V	6.3V	50V	25V	16V	10V	6.3V	50V	25V	16V	, 10V	6.3V	50V	25V	16V	, 10V	6.3V		68					+		
	220																						82							
	470																						100		_			+		
	1,000																						120					+		
	2,200																						180							
	4,700																					*.	220					+		
	10,000																					Ц 1	330							
	22,000																						390					_		
р. 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	47,000																						560				_	-		
	100,000																						680							
	220,000					11																	820					-		
	470,000																						1,200							
	1,000,000					11			11		V71				274		₩						1,500					_		
	2,200,000															77							2,200					+		
	4,700,000										11							11	$\frac{1}{2}$				2,700							
	10,000,000															(i)			1.1				3,300					+		
	22,000,000															11					(i)		4,700					+		
	47,000,000																				2.2		5,600					1		
	100,000,000																						6,800					+		
0											Y	5V											10,000							
Ca			(C100)5			0	C160	8			C	201	2			0	C321	6			12,000					+		
	(pr)	50V	25V	(040. 16V	2) 10V	6.3V	/ 50V	25V	16V	5) 10V	6.3\	(50V	25V	16V) 10V	6.3V	50V	25V	1200 16V	5) 10V	6.3V		18,000							
	100,000										0.00										2.00		22,000							
	470,000										1												27,000	-		-		+		
	1,000,000																						39,000							
E-3*	2,200,000																						47,000					-		
	4,700,000																						56,000	-		-		+		
	10,000,000			-			-	-			-	<u> </u>	-				-	-					82,000							
	22,000,000																						100,000							
* 4	70,000pF																					* E-12	2 series is a	pplied	to c	ара	cita	nce	e values :	>10 pF
Thickn	ess in mm	0.5	D 🔲	0.60		0.80).85	1	.15	1	.25	1.	30	1.6	50	2.0	0	2.3	0	2.50	2	.80 3.20) 🖾 X	(5R	*	Со	nta	ct TDK fo	or Spec

5.1 List of Standard Items (for 1005-3216 only)

Case Size	TC	Voltage	Cap (pF)	TDK Item Number	Case Size	TC	Voltage	Cap (pF)	TDK Item Number
1005	COG	50	1	C1005C0G1H010CT	2012	C0G	50	3300	C2012C0G1H332JT
1005	C0G	50	1.5	C1005C0G1H1R5CT	2012	C0G	50	3900	C2012C0G1H392JT
1005	C0G	50	2	C1005C0G1H020CT	2012	COG	50	4700	C2012C0G1H472JT
1005	C0G	50	2.2	C1005C0G1H2R2CT	2012	C0G	50	5600	C2012C0G1H562JT
1005	C0G	50	3	C1005C0G1H030CT	2012	COG	50	6800	C2012C0G1H682JT
1005	COG	50	3.3	C1005C0G1H3R3CT	2012	C0G	50	8200	C2012C0G1H822JT
1005	COG	50	4	C1005C0G1H040CT	2012	COG	50	10000	C2012C0G1H103JT
1005	C0G	50	4.7	C1005C0G1H4R7CT	3216	C0G	50	4700	C3216C0G1H472JT
1005	C0G	50	5	C1005C0G1H050CT	3216	C0G	50	5600	C3216C0G1H562JT
1005	C0G	50	6	C1005C0G1H060DT	3216	COG	50	6800	C3216C0G1H682JT
1005	C0G	50	68	C1005C0G1H6R8DT	3216	C0G	50	8200	C3216C0G1H822.IT
1005	000	50	0.0		2216	000	50	10000	C2216C0C1H102ZJT
1005	000	50	, ,	C1005C0C1H070DT	2216	000	50	12000	C2216C0C1H103JT
1005	000	50	0	C1005C0G1H080DT	2216	000	50	12000	C2216C0G1H123JT
1005	600	50	10	C1005C0C1H100DT	3210	000	50	19000	C3210C0C1U193JT
1005	000	50	10	C1005C0G1H100D1	3210	000	50	18000	C3216C0G1H163J1
1005	CUG	50	12	C1005C0G1H120J1	3216	CUG	50	22000	C3216C0G1H223J1
1005	CUG	50	15	C1005C0G1H150J1	3216	CUG	50	27000	C3216C0G1H273J1
1005	COG	50	18	C1005C0G1H180J1	3216	COG	50	33000	C3216C0G1H333J1
1005	COG	50	22	C1005C0G1H220J1					1
1005	COG	50	27	C1005C0G1H270JT	Case Size	TC	Voltage	Cap (pF)	TDK Item Number
1005	COG	50	33	C1005C0G1H330JT	1005	X7R	25	10000	C1005X7R1E103KT
1005	COG	50	39	C1005C0G1H390JT	1005	X7R	25	22000	C1005X7R1E223KT
1005	C0G	50	47	C1005C0G1H470JT	1005	X7R	25	47000	C1005X7R1E473KT
1005	C0G	50	56	C1005C0G1H560JT	1005	X7R	16	47000	C1005X7R1C473KT
1005	C0G	50	68	C1005C0G1H680JT	1005	X5R	16	100000	C1005X5R1C104KT
1005	C0G	50	82	C1005C0G1H820JT	1005	X5R	10	100000	C1005X5R1A104KT
1005	COG	50	100	C1005C0G1H101JT	1005	X5R	6.3	220000	C1005X5R0J224KT
1005	COG	50	120	C1005C0G1H121JT	1005	X5R	6.3	470000	C1005X5R0.J474KT
1005	C0G	50	150	C1005C0G1H151.IT	1005	X5R	6.3	100000	C1005X5R0 1105KT
1005	000	50	100	C1005C0G1H181 IT	1005	YED	10	100000	C1005X5R1A104KT
1005	000	50	100	C1005C0G1H101J1	1003		50	100000	C1609X7D1U102KT
1005		50	220	C1005C0G1H221J1	1608	X/R	50	10000	
1005	CUG	50	270	C1005C0G1H271J1	1608	X/R	50	22000	C1608X7R1H223K1
1005	COG	50	330	C1005C0G1H331J1	1608	X/R	50	47000	C1608X/R1H4/3K1
1005	COG	50	390	C1005C0G1H391JT	1608	X7R	50	100000	C1608X7R1H104KT
1005	C0G	50	470	C1005C0G1H471JT	1608	X7R	25	100000	C1608X7R1E104KT
1608	COG	50	1	C1608C0G1H010CT	1608	X7R	25	220000	C1608X7R1E224KT
1608	COG	50	1.5	C1608C0G1H1R5CT	1608	X7R	16	220000	C1608X7R1C224KT
1608	C0G	50	2	C1608C0G1H020CT	1608	X5R	16	470000	C1608X5R1C474KT
1608	COG	50	2.2	C1608C0G1H2R2CT	1608	X5R	16	1000000	C1608X5R1C105KT
1608	COG	50	3	C1608C0G1H030CT	1608	X5R	10	470000	C1608X5R1A474KT
1608	C0G	50	3.3	C1608C0G1H3R3CT	1608	X5R	10	1000000	C1608X5R1A105KT
1608	C0G	50	4	C1608C0G1H040CT	1608	X5R	6.3	2200000	C1608X5R0J225KT
1608	C0G	50	4.7	C1608C0G1H4R7CT	1608	X5R	6.3	4700000	C1608X5R0J475KT
1608	COG	50	5	C1608C0G1H050CT	2012	X7R	50	220000	C2012X7R1H224KT
1608	C0G	50	6	C1608C0G1H060DT	2012	X7R	25	470000	C2012X7R1E474KT
1600	000	50	69		2012	V7D	25	100000	C2012X7R1E474R1
1600	C0G	50	0.0		2012		16	1000000	C2012X5P1C105KT
1608	000	50	1	C1608C0G1H070DT	2012		10	2200000	C2012X5RTC105RT
1000	000	50	°		2012	A JR	10	2200000	C2012A5R1C225K1
1608	CUG	50	9	C1608C0G1H090D1	2012	X5R	10	2200000	C2012X5R1A225K1
1608	COG	50	10	C1608C0G1H100D1	2012	X5R	10	4700000	C2012X5R1A475K1
1608	COG	50	12	C1608C0G1H120JT	2012	X5R	6.3	4700000	C2012X5R0J475KT
1608	COG	50	15	C1608C0G1H150JT	2012	X5R	6.3	10000000	C2012X5R0J106KT
1608	COG	50	18	C1608C0G1H180JT	2012	X5R	6.3	22000000	C2012X5R0J226KT
1608	COG	50	22	C1608C0G1H220JT	3216	X7R	50	470000	C3216X7R1H474KT
1608	C0G	50	27	C1608C0G1H270JT	3216	X7R	50	1000000	C3216X7R1H105KT
1608	C0G	50	33	C1608C0G1H330JT	3216	X7R	25	1000000	C3216X7R1E105KT
1608	COG	50	39	C1608C0G1H390JT	3216	X7R	25	2200000	C3216X7R1E225KT
1608	C0G	50	47	C1608C0G1H470JT	3216	X7R	25	4700000	C3216X7R1E475KT
1608	C0G	50	56	C1608C0G1H560JT	3216	X5R	16	4700000	C3216X5R1C475KT
1608	COG	50	68	C1608C0G1H680JT	3216	X5R	16	10000000	C3216X5R1C106KT
1608	COG	50	82	C1608C0G1H820JT	3216	X5R	6.3	10000000	C3216X5R0J106KT
1608	COG	50	100	C1608C0G1H101JT	3216	X5R	6.3	22000000	C3216X5R0J226KT
1608	COG	50	120	C1608C0G1H121.IT	3216	X5R	6.3	47000000	C3216X5R0.I476KT
1608	000	50	150	C1608C0G1H151 IT	0210	7.01	0.0		
1600	000	50	190	C1609C0C1U191JT	Casa Siza	TC	Voltago	Con (nE)	TDK Itom Number
1600	C00	50	200	C1608C0G1H221 IT	1005	VEV/	16	100000	
1000	000	50	220	C1609C0C4U274 IT	1005	130	10	470000	C1005V5V/4A4747T
1008		50	270		1005	150	10	4/0000	C1609VEV/4140477
1608	CUG	50	330	C 1008C0G1H331J1	1608	¥5V	50	100000	0100815V1H104Z1
1608	COG	50	390	C1608C0G1H391JT	1608	Y5V	25	4/4444	C1608Y5V1E474ZT
1608	COG	50	470	C1608C0G1H471JT	1608	Y5V	16	1000000	C1608Y5V1C105ZT
1608	COG	50	560	C1608C0G1H561JT	1608	Y5V	10	2200000	C1608Y5V1A225ZT
1608	C0G	50	680	C1608C0G1H681JT	2012	Y5V	50	470000	C2012Y5V1H474ZT
1608	C0G	50	820	C1608C0G1H821JT	2012	Y5V	50	1000000	C2012Y5V1H105ZT
1608	C0G	50	1000	C1608C0G1H102JT	2012	Y5V	25	2200000	C2012Y5V1E225ZT
1608	C0G	50	1200	C1608C0G1H122JT	2012	Y5V	16	4700000	C2012Y5V1C475ZT
1609	COG	50	1500	C1608C0G1H152JT	2012	Y5V	10	10000000	C2012Y5V1A106ZT
1000	COG	50	1800	C1608C0G1H182JT	3216	Y5V	50	2200000	C3216Y5V1H225ZT
1608					3216	Y5V	25	4700000	C3216Y5V1F4757T
1608	000	50	2200	C1608C0G1H222.0					
1608 1608 1608	COG	50	2200	C1608C0G1H222J1 C1608C0G1H272 IT	3216	Y5\/	16	1000000	C3216Y5V1C1067T
1608 1608 1608 1608	C0G C0G	50 50	2200 2700 3300	C1608C0G1H222JT C1608C0G1H272JT C1608C0G1H332JT	3216	Y5V	16	10000000	C3216Y5V1C106ZT
1608 1608 1608 1608	C0G C0G C0G	50 50 50	2200 2700 3300	C1608C0G1H222J1 C1608C0G1H272JT C1608C0G1H332JT C1608C0G1H332JT	3216 3216	Y5V Y5V	16 10	1000000 2200000	C3216Y5V1C106ZT C3216Y5V1A226ZT

6.0 Packaging

Packaging shall be done to protect the capacitors against damage during transportation or storage. TDK capacitors are available in tape and reel, bulk case, or bag packaging styles. (TDK considers 13 inch tape and reel as standard packaging style.)

6.1 Tape & Reel

- 6.1.1 Construction and Dimension of Taping
- 1) Dimensions of carrier tape
 - Dimensions of paper tape shall be according to Table 6.1.4.A.
 - Dimensions of plastic tape shall be according to Table 6.1.4.B.
- 2) Trailer and leader of carrier tape

3) Dimensions of reel

Dimensions of 7 reel shall be according to Table 6.1.5.A. Dimensions of 13 reel shall be according to Table 6.1.5.B.

4) Structure of taping

Figure 6.1.1.B: Tape Structure

6.1.2. Chip quantity

	Thickness	Taping	Chip qu	uantity
Туре	of chip	material	Ø7 reel	\emptyset 13 reel
C1005	0.50 mm	Paper	10,000 pcs.	50,000 pcs.
C1608	0.80 mm	Paper	4,000 pcs.	10,000 pcs.
	0.60 mm	Paper	4,000 pcs	10,000 pcs
C2012	0.85 mm	Paper	4,000 pcs.	10,000 pcs.
02012	1.25 mm	Plastic	2,000 pcs.	10,000 pcs.
	0.60 mm	Paper	4,000 pcs.	10,000 pcs.
	0.85 mm	Paper	4,000 pcs.	10,000 pcs
C3216	1.15 mm	Plastic	2,000 pcs.	10,000 pcs.
00210	1.30 mm	Plastic	2,000 pcs.	10,000 pcs.
	1.60 mm	Plastic	2,000 pcs.	8,000 pcs.
	1.25 mm	Plastic	2,000 pcs.	
C2225	1.60 mm	Plastic	2,000 pcs	
03225	2.00 mm	Plastic	1,000 pcs.	
	2.50 mm	Plastic	1,000 pcs.	
	2.00 mm	Plastic	1,000 pcs.	
C4532	2.50 mm	Plastic	1,000 pcs.	
	3.20 mm	Plastic	500 pcs.	
	2.00 mm	Plastic	500 pcs.	
C5750	2.30 mm	Plastic	500 pcs.	
	2.50 mm	Plastic	500 pcs.	

Table 6.1.2 Chip Quantity

6.1.3 Performance Specifications

- 1) Peel back strength (top tape)
 - 0.05 < Peel back strength < 0.7N (Figure 6.1.3.)

Figure 6.1.3: Peel Back Tape

- 2) Carrier tape shall be flexible enough to be wound around a minimum radius of 30 mm with the components in tape.
- 3) The number of components missing shall be less than 0.1%
- 4) Components shall not stick to cover tape.
- 5) The cover tape shall not protrude beyond the edges of the carrier tape. Cover tape shall not cover the sprocket holes.

6.1.4 Carrier tape types

6.1.4.1 Type I Paper tape

*Paper carrier tape shall be used for parts having a thickness of less than 1.0 mm

Table 6.1.4.A: Paper Carrier Tape Dimensions

(Unit : mm)

Symbol Type	Α	В	с	D	E	F	G	н	J	t
C1005	0.65 +0.05 -0.10	1.15 ^{+0.05} _{-0.10}	8.0 ± 0.3	3.5 ± 0.05	1.75 ± 0.1	2.0 ± 0.05	2.0 ± 0.05	4.0 ± 0.05	Ø1.5 +0.1 -0.0	0.6 ± 0.05
C1608	1.1 ± 0.2	1.9 ± 0.2								
C2012	1.5 ± 0.2	2.3 ± 0.2	8.0 ± 0.3	3.5 ± 0.05	1.75 ± 0.1	4.0 ± 0.1	2.0 ± 0.05	4.0 ± 0.1	Ø1.5 +0.1 -0.0	1.1 max.
C3216	1.9 ± 0.2	3.5 ± 0.2								

General MLCC Specification

6.1.4.2 Type II Plastic embossed tape

*Paper embossed tape shall be used for parts having a thickness of greater than 1.0 mm

Table 6.1.4.B: Plastic Carrier Tape Dimensions

(Unit : mm)

Symbol Type	Α	В	с	D	E	F	G	н	J	к	t	Q
C2012	1.5 ± 0.2	2.3 ± 0.2	80+02	2 5 ± 0.05	1 75 ± 0 1	40+01	2.0 ± 0.05	40+01	≪ 1 5 ^{+0.1}	2.5	0.3	0.5
C3216	1.9 ± 0.2	3.5 ± 0.2	0.0 ± 0.5	5.5 ± 0.05	1.75 ± 0.1	4.0 ± 0.1	2.0 ± 0.05	4.0 ± 0.1	UI.J _{-0.0}	max.	max.	min.
C3225 (2.0 mm thk)	2.9*	3.6*	8.0 ± 0.3	3.5 ± 0.05	1.75 ± 0.1	4.0 ± 0.1	2.0 ± 0.05	4.0 ± 0.1	Ø1.5 +0.1 -0.0	2.5 max.	0.6 max.	0.5 min.
C3225 (2.5 mm thk)	2.9*	3.6*	12.0 ± 0.3	5.5 ± 0.05	1.75 ± 0.1	4.0 ± 0.1	2.0 ± 0.05	4.0 ± 0.1	Ø1.5 ^{+0.1} _{-0.0}	6.5 max.	0.6 max.	0.5 min.
C4532	3.6*	4.9*	12.0 + 0.2	5 5 ± 0 05	175 + 0.1	<u>00+01</u>	20+005	40+01	а г +0.1	6.5	0.6	1.5
C5750	5.4*	6.1*	12.0 ± 0.3	5.5 ± 0.05	1.75±0.1	0.U <u>r</u> 0.1	2.0 ± 0.05	4.0 <u> </u>	_{0.0} و.1	max.	max.	min.

*Represents typical value and is used for reference only.

Page 22 of 39

6.1.5 Reel types Reels are available in 7 and 13 inch diameters and are made of static dissipative polystyrene.

REEL DIMENSIONS

A) 7 "Reel

					<u>r</u> 		(11)	it: mm)
Symbol	A	В	с	D	E	W1	W2	r
C1005 (CC0402) C1608 (CC0603) C2012 (CC0805) C3216 (CC1206) C3225 (CC1210)	Ø178 ± 2.0	\varnothing 60 ± 2.0	Ø13±0.5	Ø21±0.8	2.0 ± 0.5	9.0±0.3	13 ± 1.4	1.0
C3225 (CC1210) 2.5 thk. C4532 (CC1812) C5750 (CC2220)	Ø178±2.0	\varnothing 60 ± 2.0	\varnothing 13 ± 0.5	Ø21±0.8	2.0 ± 0.5	13.0 ± 0.3	17.0 ± 1.4	1.0

Figure	6.1.5.A: 7	Reel Dimer	nsions
--------	------------	-------------------	--------

B) 13 Reel

REEL DIMENSIONS

6.2 **Bulk Case**

6.2.1 Dimensions of bulk case

Figure 6.2.1: Dimensions of Bulk Case

6.2.2 Chip quantity

		(Unit : mm)
Туре	Thickness of chip	Chip quantity (pcs./ case)
C1005	0.5 ± 0.05	50,000
C1608	0.8 ± 0.07	15,000
C2012	0.6 ± 0.10	10,000
C3216	0.6 ± 0.10	5,000

Table 6.2.2: Chip Quantity

Accuracy of chip quantity 6.2.3

+50

 -0.0° pcs. of total quantity shall be guaranteed.

6.2.4 Material

Polycarbonate (Static dissipative)

6.3 Bulk Bag

6.3.1 Dimensions of bulk bag

Figure 6.3.1: Bulk Bag Dimensions

6.3.2 Chip quantity

Case	Quantity/Bag	
C1005	30,000	
C1608	10,000	
C2012	5,000	
C3216	5,000	

Figure 6.3.2: Quantity per Bag

6.3.3 Material

Static dissipative plastic zip lock bag.

6.4 Labeling (Applies to MLCCs manufactured at TDK Components USA, Inc. only)

The following details specifications for Reel/Bag labels.

6.4.1 Barcode Type

TDK packaging labels conform to the non-retail American Industry barcode standard "Code 39."

6.4.2 Data Identifiers

Data identifiers in human readable areas shall appear in the title area only. The identifier should be contained in parenthesis after the title itself. Identifiers included in the human readable data areas are unacceptable.

Example:

Quantity for a given package is 10,000 pcs. Human readable area should read as follows:

QTY(Q):10000

Incorrect representations would be:

QTY:Q10000 QTY(Q):Q10000

6.4.3 Data with Barcode

Human readable data corresponding to each barcode shall be between 3.0-5.0 mm. Font shall be represented in an Arial-style character.

6.4.4 Spacing

A margin (or quiet zone) of minimum dimension shall surround all barcode fields:

Figure 6.4.1 Barcode Field Margins

6.4.5 Other Data

Other data that is not associated with a bar-coded field shall be between 2.0-6.0 mm height, Arial Font.

6.4.6 Bisector

A 0.5 mm line shall be placed horizontally across the label 1.7 cm from label bottom edge. This line serves as a division between information most frequently used by the customer (upper area) and TDK supporting data.

6.4.6 Bar-coded Data Fields

All data fields included in the TDK Standard Label are described in this section. Examples of standard Reel/Bag and Cassette labels are shown as follows:

Figure 6.4.5A: Reel/Bag label

Figure 6.4.5B: Cassette label

1 **Customer Product ID (P)** - The customer-supplied part number in accordance with TDK customer registration.

- 2 **Reel** # This field will list in ascending order the reel, bag, or cassette number as manufactured.
- 3 Quantity (Q) Total number or pieces packaged in that reel, bag, or cassette.
- 4 Vendor (V) Supplier ID (which will always read TDK).
- 5 Lot (1T) The TDK Inspection Number that allows traceability of the lot.
- 6 **Date Code (T)** This field contains the year and workweek the product was packaged in the format (YYWW). For example, A lot packaged on January 1, 1999 would read: 9901.
- (7) Fields below the **bisector** contain human readable and TDK internal processing information.

- 6.4.6 Human Readable Data Only
 - 6.4.6.1 Manufacturing Site

This field contains the site of origin. For TCU standard labels, this field will read.

TDK COMPONENTS USA, INC.

6.4.6.2 TDK Item

This field contains the 18 or 19 character TDK Item for TDK reference.

6.4.6.3 Customer Name

This field contains the appropriate customer name.

6.4.6.4 Label Date

This field contains the date the label was printed in MM/DD/YY format.

7.0 Caution

Table 7.0: Caution

No.	Process	Condition
		 The capacitor must be stored in an ambient temperature between 5 ~ 40°C with a relative humidity of 20 ~ 70%. The products should be used within 6 months upon receipt.
1	Storage	 The capacitors must be stored in an environment free of gases such as Hydrogen Sulphide, Hydrogen Sulphate, Chlorine and Ammonia.
		3) Avoid storing in direct sunlight and falling of dew.
		2-1 Operating temperature
		Operating temperature should be followed strictly within this specification.
		1) Do not use capacitor above the maximum allowable operating temperature.
		 2) Surface temperature including self heating should be below maximum operating temperature. (Due to dielectric loss, capacitor will heat itself when AC is applied. Especially at high frequencies around its SRF, the heat might be so extreme that it may damage itself or the surrounding area. Please design the circuit so that the maximum temperature of the capacitor including the self heating to be below the maximum allowable operating temperature.)
		2-2 Operating voltage
2	Circuit design	 Operating voltage across the terminals should be below the rated voltage. When AC and DC are super imposed, the peak must be below the rated voltage. With AC or pulse overshooting, the peak must be below the rated voltage.
		 Even below the rated voltage, if repetitive high frequency AC or pulse is applied, the reliability of the capacitor may be reduced.
		3) Voltage derating will greatly reduce the failure rate. Since the failure rate follows the 3 power law of voltage, the failure rate used under Uw with UR rated product will be lowered as (Uw/UR) ³ .

Table 7.0: Caution (continued)

No.	Process		Condition							
		The amount capacitor.	of solder at	t the termir	nations has	s a direct e	ffect on the	e reliability	of the	
		1) The grea the more shape ar terminati	1) The greater the amount of solder, the higher the stress on the chip capacitor, and the more likely that it will break. When designing a P.C. board, determine the shape and size of the solder pads to have proper amount of solder on the terminations.							
		2) Avoid us solder pa	ing commo ads for eac	on solder p h terminati	ads for mu ons.	Iltiple termi	nations an	d provide i	ndividual	
		See the	following ta	ble for rec	ommende	d pad dime	nsions.			
3	Designing P.C. board		Wave	Solder resis		nip Capacitor	Solder pa	d		
			Typ	C1	608)603)	C2012 (CC0805)	C (C	:3216 C1206)		
			A	0.7	~ 1.0	1.0 ~ 1.3	2.	, 1 ~ 2.5		
			В	0.8	~ 1.0	1.0 ~ 1.2	1.	1 ~ 1.3		
			С	0.6	~ 0.8	0.8 ~ 1.1	1.	0 ~ 1.3		
		Reflow Sold	ering						(Unit : mm)	
		Type Symbol	C1005 (CC0402)	C1608 (CC0603)	C2012 (CC0805)	C3216 (CC1206)	C3225 (CC1210)	C4532 (CC1812)	C5750 (CC2220)	
		A	0.3 ~ 0.5	0.6 ~ 0.8	0.9 ~ 1.2	2.0 ~ 2.4	2.0 ~ 2.4	3.1 ~ 3.7	4.1 ~ 4.8	
		В	0.35 ~ 0.45	0.6 ~ 0.8	0.7 ~ 0.9	1.0 ~ 1.2	1.0 ~ 1.2	1.2 ~ 1.4	1.2 ~ 1.4	
		С	0.4 ~ 0.6	0.6 ~ 0.8	0.9 ~ 1.2	1.1 ~ 1.6	1.9 ~ 2.5	2.4 ~ 3.2	4.0 ~ 5.0	

No.	Process	Condition					
		 Recommended chip capacitor layout is as follows: 					
		SubjectDisadvantage against bending stressAdvantage against bending stress					
	Designing P.C. board (Continued)	Perforation & slit Perforation & slit Mounting face Slit Break P.C. board with mounted side up Break P.C. board with mounted side down.					
3		Chip arrangement (Direction)					
		Closer to slit is higher stress Away from slit is less stress Direction of Direction of breaking ℓ_1 Slit ℓ_2 Slit ℓ_1 ($\ell_1 < \ell_2$) $(\ell_1 < \ell_2)$					

No.	Process	Condition					
		5) Mechanica	Perforation Perforation The stress in Capa A >	g to location of chip cap \Box \Box \Box \Box \Box \Box \Box \Box	pacitors on the P.C. board.		
3	Designing	Example	Use of common solder land	Soldering with chassis	Use of common solder land with other SMD		
	(Continued)	Need to avoid	Lead wire Chip Solder PCB Adhesive Solder pad	Chassis Excessive solder	Solder pad Excessive solder Missing solder		
		Recommended	Lead wire Solder resist	Solder resist \downarrow \downarrow \downarrow $\ell_2 > \ell_1$	Solder resist		

Table 7.0: Caution (continued)

Table	7.0:	Caution ((continued)

No.	Process	Condition						
		 4-1 Stress from If the mo Capacito 1) Adjust surfac 2) Adjust 3) To min support 	om mo unting r resu t the b e and t the n nimize ort fron	ounting head thead is adjusted too ilting in cracking. Plea oottom dead center of not pressing on it. nounting head pressur the impact energy from the bottom side of th	low, it ma ase take th the moun re to be 1 om mount ne P.C. bo	ay induce ex he following ting head to to 3N of sta ting head, it pard.(see fol	cessive stress in the cl precautions. just on the P.C. board tic weight. is important to provide lowing)	hip
		Mountin	g	Not recommende	d	R	ecommended	1
		Single sided		Crack		[Support pir		-
4	Mounting	Double sided	=	Termination peeling	Cracks	Support p		
When the centering jaw is worn out, it may give mechanical impact cause a crack. Please control the close up dimension of the center sufficient preventive maintenance and replacement of it.						pact on the capacitor to entering jaw and provid	o le	
				4-2 Amount of adne	esive			
		Example : C2012 (CC0805) and C3216 (CC1206)						
		Label	s	а		b	с	
		Dimensi	ons	0.2mm min.	70 ~	100 um	do not touch the solder pad	

No.	Process			Condition			
		 5-1 Flux sele Although hig activity may a degradation, 1) It is reconstrong fluing 2) Excessive 3) When was 5-2 Recommendation 	ection hly-activated flux give also degrade the insu the following is reco mmended to use a m ux is not recommend re flux must be avoid ater-soluble flux is us hended soldering pro	es better solderability, s ulation of the chip capac mmended. hildly activated rosin flux ed. ed. Please provide prop ed, enough washing is in file by various methods	ubstances which inc itors. To avoid such (less than 0.1 wt% per amount of flux. necessary.	chlorine).	
		Temperature 0	ΔT 60seconds or more 2 to 3seconds	a 1 to 20sec.	,		
5	Soldering	5-3 Avoiding 1) Preheatin	Manual soldering (Solder iron) ΔT Pre-heating thermal shock g condition	wave sol only for th C1608 C2012 C3216	dering is recommende ne following case sizes 3 (CC0603) 2 (CC0805) 5 (CC1206)	ed	
			Soldering	Size	Temp. (°C)		
Wave soldering C3216 (CC		C3216 (CC1206) or less	16 (CC1206) or less $\Delta T \le 150$				
			Reflow soldering		ΔT ≤ 190		
			$C3225 (CC1210) \text{ or more} \qquad \Delta T \le 130$		$\Delta T \le 130$		
			Manual soldering C3216 (CC1206) or less $\Delta I \le 190$ C3225 (CC1210) or more $\Delta T \le 130$				
		2) Cooling (
				mondod If the shine -	o dinnod into a solut	ant for	
		cleaning, the	temperature differer	nce (ΔT) must be less th	e dipped into a solve an 100°C.		

No.	Process	Condition				
		 If an unsuitable cleaning fluid is used, flux residue or some foreign article may stick to chip capacitor surface causing deteriorated performance, especially insulation resistance. 				
	Cleaning	 If the cleaning condition is not suitable, it may damage the chip capacitor. Insufficient washing Lead wire and terminal electrodes may corrode due to Halogen in the flux. Halogen in the flux may adhere on the surface of capacitor, and lower the insulation resistance. Water soluble flux has higher tendency to have the above mentioned problems (1) and (2). 				
0		 2-2) Excessive washing (1) Excessive washing may damage the coating material of coated capacitor and deteriorate it. (2) When ultrasonic cleaning is used, excessively high ultrasonic energy output can affect the connection between the ceramic chip capacitor's body and the terminal electrode. To avoid this, use the following recommended condition. Power : 20W/I max. Frequency : 40kHz max. Washing time : 5 minutes max. 				
		2-3) If the cleaning fluid is contaminated, the density of Halogen increases, and it may bring the same result as insufficient cleaning.				
7	Coating and molding of the P.C. board	 When the P.C. board is coated, verify the quality influence on the product. Verify that there is no harmful decomposing or reaction gas emittion during curing. Verify the curing temperature. 				
		 Please pay attention not to bend or distort the P.C. board after soldering in handling and storage, otherwise the chip capacitor may crack or dislodge. Avoid the following: 				
8	Handling after chip is mounted	Bend Twist				

No.	Process	Condition					
		2) When functional check of the P.C. board is performed, check pin pressure as it tends to be adjusted higher for fear of loose contact. If the pressure is excessive and bends the P.C. board, it may crack the chip capacitor or peel the terminations off.					
		Adjust the c	heck pins not to bend the P.C. boar	d.			
	Hondling	Item	Not recommended	Recommended			
8	Handling after chip is mounted (Continued)	Board bending	Termination peeling Check pin	Support pin			
9	Handling of loose chip capacitor	 If dropped the chip capacitor may crack. Once dropped do not use it. This is especially true for large case sized chips. <i>Crack</i> <i>Crack</i> <i>Surface</i> Avoid piling up P.C. boards after mounting. The corner of the P.C. board may hit the chip capacitor of another board causing the chip to crack or dislodge. 					
10	Others	If a capacitor fails in medical, aerospace or nuclear equipment, it may incur extensive loss of life and damage in society. For such purposes specially designed high reliability capacitors must be used.					

8.0 Disposal

Dispose this product as industrial waste in accordance with local Industrial Waste regulations.

End of specification